Laserbasierte Untersuchung der Flamme-Wand-Interaktion

Vom Fachbereich Maschinenbau an der Technischen Universität Darmstadt zur

Erlangung des Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte

Dissertation

vorgelegt von

Dipl.-Ing. Markus Mann

aus Siegen

Berichterstatter: Prof. Dr. rer. nat. A. Dreizler

Mitberichterstatter: Prof. Dr. rer. nat. C. Schulz

Tag der Einreichung: 30. April 2013

Tag der mündlichen Prüfung: 12. Juni 2013

Darmstadt 2013

D17

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Mann, Markus:

Laserbasierte Untersuchung der Flamme-Wand-Interaktion ISBN 978-3-86376-048-9

Alle Rechte vorbehalten

1. Auflage 2013, Göttingen

© Optimus Verlag
URL: www.optimus-verlag.de
Printed in Germany
Papier ist FSC zertifiziert (holzfrei, chlorfrei und säurefrei, sowie alterungsbeständig nach ANSI 3948 und ISO 9706)

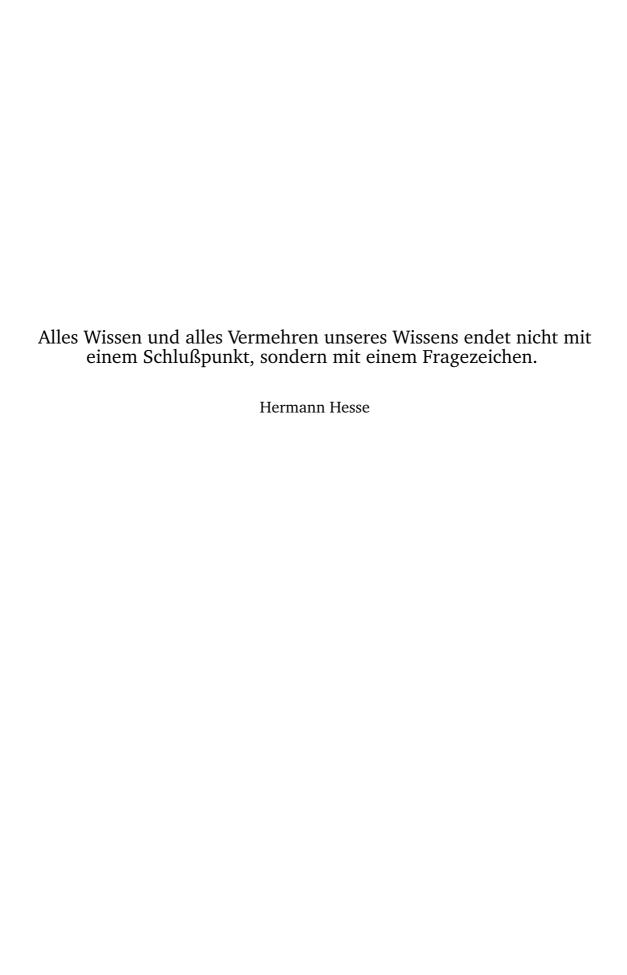
Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetztes in Deutschland ist ohne Zustimmung des Autors unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Danksagung

Diese Arbeit entstand im Rahmen meiner Tätigkeit als Stipendiat und Wissenschaftlicher Mitarbeiter am Fachgebiet Reaktive Strömungen und Messtechnik an der TU Darmstadt in den Jahren 2009 bis 2013. Daher gilt mein besonderer Dank dem Fachgebietsleiter Herrn Prof. Dr. Andreas Dreizler für die Möglichkeit zur Promotion, das entgegengebrachte Vertrauen und Freiheit bei der Gestaltung dieser Arbeit. Die ausgezeichneten Rahmenbedingungen ermöglichten es, die Promotion in der angestrebten Zeit zu vollenden. Zahlreiche fruchtbare Diskussionen zeugten von hohem Interesse an dieser Arbeit und trugen wesentlich zum ihrem Gelingen bei.

Weiterhin gilt mein aufrichtiger Dank Herrn Prof. Dr. Christoph Schulz für die Übernahme des Korreferates und das damit zum Ausdruck gebrachte Interesse an meiner Arbeit. Die eingebrachten Ideen und Impulse haben zur Verbesserung dieser Arbeit beigetragen.

Bei Herrn Dr. Christopher Kliewer möchte ich für die gemeinsam durchgeführte Messkampagne in den Sandia National Laboratories, Livermore, USA, bedanken und die Gastfreundschaft, die ich während dieser Zeit erfahren durfte. Die dort gewonnen Erkenntnisse haben großes Potential für zukünftige Forschungsvorhaben auf dem Gebiet der Flamme-Wand-Interaktion und darüber hinaus.


Meinen Kollegen am Fachgebiet – genauer müsste man sagen: an den Fachgebieten EKT und RSM – danke ich für die großartige Arbeitsatmosphäre und die Unterstützung, die mir wiederfahren ist. Darunter möchte meine Mitstreiter der wandnahen Verbrennung MSc. Elias Baum, Dr.-Ing. Thilo Kissel, MSc. Christopher Jainski und Dr.-Ing. Jan Brübach besonders hervorheben. Ein ganz herzlicher Dank gilt den Weggefährten erster Stunde, Bürokollegen und -Nachbarn Dipl.-Ing. Philipp Trunk und Dipl.-Ing. Jens Herrmann, mit denen ich auf dienstlichen und privat unternommenen Weltreisen viele tolle Erlebnisse verbinde, die mir noch lange in guter Erinnerung bleiben mögen. Herrn Dipl.-Ing. Andreas Ludwig danke ich für seine Unterstützung im Labor und insbesondere für das Korrekturlesen dieser Arbeit. Stellvertretend für das Team der mechanischen Werkstatt danke ich Herrn Roland Berntheisel für die Anregung zu zahlreichen Detailverbesserungen verbunden mit der Fertigung der Prüfstandskomponenten.

Ein besonderer Dank gilt meinen Eltern für die uneingeschränkte Unterstützung während der Schul- und Studienzeit, die mir diesen Weg überhaupt erst möglich gemacht hat. Bei meinen Freunden und den Kameraden des THW OV Wörrstadt bedanke ich mich für die gute Zeit und den erfrischenden Ausgleich zu meiner wissenschaftlichen Tätigkeit.

Aus tiefstem Herzen danke ich meiner Freundin Stefanie Geis, die viele Entbehrungen still ertragen hat und für die liebevolle Unterstützung, die sie mir zu Teil werden ließ.

Mainz, Juni 2013

Markus Mann

Inhaltsverzeichnis

1	Einleitung								
	1.1		grund und Motivation						
	1.2	Stand	der Forschung						
		1.2.1							
			Laserbasierte Verbrennungsdiagnostik	5					
	1.3	Strukt	ur der Arbeit	8					
2	Grundlagen von Verbrennung und Flamme-Wand-Interaktion								
	2.1	Grund	llegende Begriffe der Verbrennung	10					
	2.2		gleichungen						
	2.3	Reakti	onskinetik und Reaktionsmechanismen	14					
	2.4	Turbul	lenz	16					
	2.5		schichten	18					
	2.6	Station	näre eindimensionale Vormischflammen	19					
		2.6.1	Frei propagierende Vormischflammen	19					
		2.6.2	Stagnationsflammen	21					
	2.7	Turbul	lente Vormischverbrennung	22					
	2.8	Flamn	ne-Wand-Interaktion						
		2.8.1	Laminare Flamme-Wand-Interaktion	25					
		2.8.2	Turbulente Flamme-Wand-Interaktion	29					
3	Messtechnische Methodik 3:								
	3.1	Grund	llagen der Spektroskopie	31					
		3.1.1	Elektrodynamik	31					
		3.1.2	Klassische Wellenoptik	32					
		3.1.3	Quantenmechanik	33					
	3.2	Kohär	ente anti-Stokes Raman-Spektroskopie	43					
		3.2.1	Grundprinzip des CARS-Prozesses	43					
		3.2.2	Theoretischer Hintergrund	45					
		3.2.3	Rovibronische CARS-Thermometrie am N ₂ -Molekül	48					
		3.2.4	Auswertung	51					
		3.2.5	Charakterisierung des Messsystems und Messungenauigkeiten	53					
		3.2.6	Ultrakurzpuls-Rotations-CARS	56					
	3.3	Spektr	roskopischer Nachweis von Kohlenstoffmonoxid	61					
		3.3.1	Kohlenstoffmonoxid	61					
		3.3.2	Laserinduzierte Fluoreszenz	62					
		3.3.3	Versuchsaufbau	67					
		3.3.4	Auswertung	69					

	0.4		Charakterisierung des Messsystems						
	3.4		e Image Velocimetry						
			Grundlagen		76				
		3.4.2	Experimenteller Aufbau		79				
		3.4.3	Auswertung		80				
		3.4.4	5		82				
	3.5		re Laserinduzierte Fluoreszenz am OH-Radikal		83				
		3.5.1			83				
		3.5.2	Struktur und Nachweis von OH		84				
		3.5.3	Detektion der chemischen Hauptreaktionszone		84				
		3.5.4			85				
		3.5.5			86				
		3.5.6	Auswertung		87				
		3.5.7	Flammenpropagation		90				
	3.6	Bestim	nmung der Flammengeschwindigkeit	•	91				
4	Messobjekt 93								
	4.1	Flamm	ne-Wand-Interaktions-Brenner		93				
	4.2	Station	näre Betriebsweise		94				
	4.3	Verlöse	chende Betriebsweise		96				
		4.3.1	Zündsystem	. (96				
5	Ergebnisse und Diskussion 99								
	•		näre Betriebsweise		99				
		5.1.1	Temperatur und CO-Konzentration						
		5.1.2	Enthalpie- und Wärmestrom						
		5.1.3	<u>=</u>						
		5.1.4							
	5.2	Transi	ente Flamme-Wand-Interaktion						
		5.2.1	Temperatur, Löschabstände, Enthalpieentzug						
		5.2.2	1 .						
		5.2.3	Flammenpropagation gegen feste Oberflächen						
6	7,1152	ammen	fassung und Ausblick	1:	21				
_									