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Chapter 1

Introduction
This work addresses the simulation of premixed combustion with regard to the application
in stationary gas turbines and future aero engines. In the following the global background
leading to the motivation of this work will be given. After that, the state of research in
this area is briefly outlined followed by the concrete aims of this work. At the end of this
chapter, the structure of this thesis is given.

1.1 Background
Within the combustion process chemically bound energy is transformed into heat. Herein
the reaction takes place between the fuel and an oxidizer, often the oxygen contained in
the air. Since its discovery many thousands of years ago, the thermal energy obtained
from combustion was first exclusively used directly for example to heat or for food prepa-
ration. Mainly wood was used as fuel. Within the last centuries, machines have been
designed to convert the heat into other forms of energy for the final usage, e.g. mechan-
ical motion by the steam engine within the 18th century. Over the last 150 years major
achievements have been obtained in the area of thermodynamics. The basic principles
of the thermodynamic cycles which transform heat into mechanical energy developed in
this time are still up to date. These can be found in coal power plants (Clausius-Rankine
process1) or stationary gas turbines (Joule process2) for electricity generation, in aero
engines (open Joule process) to generate thrust or in internal combustion engines (Otto
and Diesel process3). The fuels used are mostly coal, oil and gas.

Today combustion is the most important pillar to cover the energy demand of industrial-
ized economies. Approximately 90 % of the primary energy consumption is obtained by
combustion processes [21; 91; 243]. Due to the negative impact of the reaction products
onto the local air composition [231] as well as onto the global climate [92; 232] these
must be reduced. The plans to realize this are embedded in an area of tension between
technological capabilities and economical and political interests. Furthermore, the efforts
are counteracted by the increasing energy demand. This demand has doubled within the
last 40 years [91] and will further increase according to all prognoses (e.g. [90]). The
cause is the increasing industrialization of emerging and developing economies like India

1Named after the physicists Rudolf Clausius (1822-1888) and William John Macquorn Rankine (1820-
1872).

2Named after the physicist James Prescott Joule (1818-1889).
3Named after the inventor Nicolaus Otto (1832-1891) and the engineer Rudolf Diesel (1858-1913).
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and China [233] whose today’s per capita energy consumption is below the world average
and significantly lower compared to fully developed economies [243]. Therefore, it is more
realistic to water down further damage caused by the emissions than to actually reduce
them in order to keep the climate change as little as possible [214].

Current measures are related to a better usage of the combustion as well as the utilization
of other forms of energy. Regarding the optimization of combustion systems two steps
are important.

The first step is the conversion of the chemically bound energy into heat. It is deci-
sive for the composition and temperature of the burnt gases. One distinguishes between
premixed and non-premixed combustion. Within non-premixed combustion, fuel and ox-
idizer are introduced separately into the combustor and react as soon as they approach
each other, given the necessary activation energy is present. The essential advantage is
the safety since no flammable mixture exists outside of the combustor. Within premixed
combustion fuel and oxidizer are mixed before reaction occurs with the risk of flashback.
Furthermore, this type of flame is prone to thermo-acoustic instabilities. Despite these
difficulties, huge efforts are committed to optimize premixed combustion for its applica-
tion since it enables to avoid high peak temperatures, mainly present at stoichiometric
conditions which are always found in non-premixed flames. This is necessary to reduce
the thermal formation of nitric oxides (NO and NO2, often summarized as NOx) by the
Zeldovich mechanism [258]. Since these constitute a major portion of the pollutants and
contribute to acid rain, ozone formation and smog problems, strong regulations exist for all
applications. Regarding these, the requirements for aero engines given by the Committee
on aviation environmental protection (CAEP [89]) are hardly met by most of the devices
which almost exclusively operate with non-premixed combustors. In view of future goals
given by the Advisory Council for Aeronautics Research in Europe (ACARE [1; 2]) which
include the reduction of NOx emissions by 80 % (compared to CAEP 2) until 2020, the
changeover to lean premixed combustors, as already used in stationary gas turbines [15],
is planned [118]. Similar regulations exist for vehicles (e.g. European emission stan-
dards [53]).

The second step consists of the conversion of the heat into mechanical energy by the ther-
modynamic cycle. The most environment-friendly method is the combustion of gaseous
fuels in combined cycle power plants. By using a high temperature level Joule process
followed up by a Clausius-Rankine process of lower temperature, an overall efficiency
above 60 % can be obtained [239]. Currently, this technology is somewhat limited by the
availability of natural gas since the known resources, even though considerable in amount,
are quite concentrated to only a few countries led by the Russian Federation, Iran and
Katar [235]. Therefore coal power plants are often employed by countries like Germany
or China which have a vast amount of own coal resources. However, these have a lower
efficiency (approximately 47 %) and emit significantly more carbon dioxide attributed to
the fuel.

On the side of renewable energies, hydro power, geothermal energy, ocean energy, wind
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energy, solar energy and biomass are found. Their contribution to the production of en-
ergy will significantly increase in the future [237] whereby the distribution among each
other is open due to the partially young technology [221]. Herein hydro power is limited
by geodesic conditions. Currently wind- and solar energy exhibit high rates of growth.
Both technologies are promising, but have a low energy density when compared to con-
ventional power plants which limits their applicability in densely populated regions like
Europe. Furthermore, the energy production depends on the weather. Therefore, the
ability to store and transport energy is decisive for their implementation. To store the
energy, thermal (e.g. steam accumulator), mechanical (e.g. pump storage), electrical (e.g.
capacitors) and chemical storages (e.g. batteries) are used [236]. Regarding the latter one,
the synthetic production of fuels (hydrogen or methane) is also under development which
can then be used for combustion in combined cycle power plants [238]. In the area of
biomass, the systematic planting of biofuel-plants for combustion is applied besides the
usage of bio-waste. At this, the consumption of carbon dioxide during the growth shall
establish a neutral balance. During the last years this technology also exhibits high rates
of growth but competes with food regarding the acreage.

Hence, regarding the overall energy situation the following can be summarized. Due to
the increasing energy demand which is currently covered by renewable energies by only
a small fraction with limited rates of growth, also in the future the majority of energy
will be obtained by conventional combustion processes, mostly in gas- and coal power
plants and internal combustion engines4. Thereby, the fraction of renewable energies will
significantly increase at which combustion acts either supporting e.g. to ensure the base
load, complementary e.g. by biofuels, or even technology-completing via synthetic fuels.
Within all of these, premixed combustion plays a decisive role.

1.2 Motivation of this work
The simulation of physical processes becomes increasingly important within research and
development. The demand basically arises for two reasons. First, expensive experi-
ments (e.g. crash experiments) should at least be reduced or even completely replaced
by simulations. Furthermore, the simulation reveals more information, e.g. the load and
deformation of individual components instead of the macroscopic recording by high speed
cameras. These information in turn can be used for a better understanding of the process
and thus for its optimization. These demands are faced by the current capabilities of the
simulation. While several processes like elastic deformations can already be computed
very accurately, numerous examples exist whose simulation is desirable but the results
need to be taken with a pinch of salt which limits its application. One of these appli-
cations is the simulation of flows generally referred to as computational fluid dynamics
(CFD). Already the occurrence of turbulent structures can often only be approximated.
The complexity gets further increased by mixing processes e.g. between fuel and oxidizer
as well as their chemical reaction such that the simulation is no longer able to correctly

4The role of nuclear energy is uncertain, since, especially after the recent incidents in Fukushima, it is
a difficult political / emotional discussion.
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describe the situation. The causes for the deficiency are the incomplete theoretical de-
scription of the process as well as the available computing capacities. The latter one is
currently much more restrictive since the understanding of the physical mechanism and
its mathematical description are generally very good. The demand for computing capaci-
ties arises from the necessity to resolve the relevant phenomena. Herein, the length scales
involved vary by several orders of magnitude ranging from the reaction kinetics up to
the combustor geometry. Therefore, the simulation cannot capture the overall process.
Hence, the current improvements of the simulation result from the increasing computing
capacities as well as from the development of methods to simplify the problem without
too restricting assumptions. The latter one is subject of this work.

1.3 State of research
Due to the above mentioned complexity, a wide range of applications and developments
of combustion simulations exists. Herein, besides statistically stationary premixed and
non-premixed flames, globally transient processes like ignition and extinction, flashback
and thermo-acoustic instabilities belong to the phenomena considered. At this, the con-
figurations used vary significantly. Starting from one- and two-dimensional domains of
small extent, also full scale gas turbine combustors or internal combustion engines includ-
ing complex inlet and outlet ducts have been simulated. Accordingly, various numerical
methods exist for the three simulation approaches given by the time-averaged descrip-
tion (RANS), the large eddy simulation (LES) and the direct numerical simulation (DNS).
Herein, structured one- or multi-block meshes with cubic or curved cells, or unstructured
meshes are employed for the spatial discretization depending on the complexity. Fixed as
well as moving meshes to follow for example the piston movement are used. Also adaptive
schemes exist to refine the mesh according to local criteria.

Amongst these topics a mutually exclusive interaction exists. In this respect the consid-
eration of detailed chemical processes is not possible in the simulation of real combustors
due to the large range of different length scales and vice versa [168]. Often times this is
also not necessary. Currently, detailed chemistry DNS are conducted in small scale cubic
domains as well as LES of realistic complex geometries where these details are not cap-
tured. Both approaches are incomplete and profit from the knowledge gained mutually.
Within this exchange, ignition sequences [256], flame-vortex interactions [177] or strat-
ification processes [72; 135; 136] are often investigated separately to obtain information
about the underlying physics and to derive models for the simulation techniques with a
lower resolution. In these detailed studies, the increasing computing capacities already
allow the simultaneous simulation of numerous phenomena as recently done by Yoo et al.
[257] who studied the stabilization mechanism of a turbulent ethylene flame by means of
DNS with reduced chemistry. But, for these simulations the most powerful high perfor-
mance computers are employed yielding immense costs [31].

Regarding the simulation of realistic geometries, LES has established as an appropriate
technique in the research community. It allows the simulation of complex devices and
—contrary to the RANS technique which is currently the industrial standard due to the
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low computing costs— converges towards the DNS solution with increasing resolution.
By resolving only the large scale structures LES enables the simulation of turbulent flows
within affordable computational costs. Especially simulations of combustion processes
profit from the explicit computation of the fluctuations which determine the transient
field of scalar quantities (e.g. [20; 96; 113]). Despite the fact that already several sim-
ulations of real combustors have been carried out [68], a huge research demand exists
to improve the modeled part that accounts for the unresolved turbulent structures and
chemical processes. Regarding the subgrid turbulence, besides the general questions re-
garding the LES [180], additional issues arise for combustion simulations related to the
fluctuation of scalar quantities [240]. But, the essential modeling demand is associated
with the treatment of the chemical reaction since even the largest length scales of the
chemistry are generally smaller than the grid size. Hence, the treatment of detailed
chemistry is impossible and the combustion model aims at reproducing the most impor-
tant properties of the reaction on the LES mesh. For premixed combustion this is the
propagation speed of the flame and its wrinkling. Various approaches, often adopted from
RANS models (see [51; 174]), exist but many of them are unable to predict the laminar
flame speed, a vital property with the increasing resolution available. Currently often
used and capable of that are the artificially thickened flame model (ATF) [38] and the
G-equation [172] or flame surface density (FSD) [80] approach. The ideas behind them
are fundamentally different. Within ATF, the length scales of the flame are artificially
increased until they can be resolved on the LES mesh and the correct flame speed can be
computed, generally with strongly reduced chemical mechanisms. Within the G-equation
and FSD approach, the flame is treated like a kinematic surface which propagates with a
prescribed velocity. Hence, not the chemistry itself but rather its implication is modeled.
Both approaches are established with continuous improvements of details. Their predict-
ing capabilities assessed using generic burners where detailed experimental data exists,
are generally satisfying. At this, the ATF model is more universal since it contains no
restricting assumptions regarding a certain flame structure. The kinematic approach on
the other hand assumes a premixed flame propagation but has a lower amount of unre-
solved wrinkling for this flame mode.

Besides the prediction of statistically stationary flames, LES is currently also used for
the investigation of important intrinsically transient processes. One of these are thermo-
acoustic phenomena in which the heat release induced by combustion interacts with the
pressure field of the flow. Under certain conditions depending on the combustor geometry
an unstable amplification can occur which causes severe problems in the development of
premixed combustors with low pollutant emissions [87]. Therefore, this thermo-acoustic
instability is currently addressed by several research groups. Again, in a supplementary
process, theoretical considerations [149] as well as LES of generic flames [61] and complete
combustors [217] are conducted. Again, the chemistry is often treated by ATF or the G-
equation. Besides the thermo-acoustic phenomena, ignition/flame propagation, blowoff or
flashback are transient processes currently addressed by LES. For example Boileau et al.
[16] simulated the ignition sequence of a whole annular combustor. Regarding flashback,
by explicitly computing three-dimensional turbulent structures, the LES offers the abil-
ity to gain a better understanding of the physical processes as a complementary tool to
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