Thorsten Bonato

Contraction-based Separation and
Lifting for Solving the Max-Cut Problem

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

Bonato, Thorsten:
Contraction-based Separation and Lifting for Solving the Max-Cut Problem
ISBN 978-3-941274-86-0

All Rights Reserved

1. Edition 2011, G6ttingen
© Optimus Verlag

URL: www.optimus-verlag.de

Printed in Germany
Paper is FSC certified (wood-free, chlorine free and acid-free,
and resistant to aging ANSI 3948 and ISO 9706)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, scanning, or otherwise
without the prior written permission of the Publisher. Request to the Publisher for permission
should be addressed to info@optimus-verlag.de.

Preface

The max-cut problem consists in partitioning the nodes of an undi-
rected weighted graph into two sets such that the aggregate weight of
the edges between these sets is maximized. This well-known combi-
natorial optimization problem is the reformulation, in graph theoret-
ical terms, of the unconstrained 0/1 quadratic problem which aims
at optimizing a quadratic objective function over the set of all 0/1
vectors of fixed dimension. In general, the max-cut problem is NP-
hard, although selected special cases can be solved in polynomial
time. It has a number of interesting applications such as the optimal
design of very-large-scale-integration (VLSI) circuits or the study of
minimum energy configurations of spin glasses—alloys of magnetic
impurities diluted in a nonmagnetic metal—which is among the most
investigated topics in the statistical physics literature.

The present book is concerned with finding provably optimal solu-
tions of the max-cut problem as opposed to approximate solutions.
To do so, we use the established and well-working branch-and-cut
method, a generic solution technique whose performance for a given
type of optimization problem is mainly determined by two key ele-
ments: Firstly, a close yet manageable approximation of the poly-
hedron associated with the problem. Secondly, efficient methods to
solve the corresponding separation problem which is to decide for an
arbitrary point in the ambient space whether or not it lies inside the
polyhedron just mentioned.

For complete graphs, the max-cut problem and the associated cut
polytope have been extensively studied over the last decades. Their
counterparts on arbitrary graphs, in particular sparse ones, on the
other hand, have received much less attention. Moreover, the trans-
ferability of methods from the complete to the sparse case is limited.
This is mainly because the respective methods often require cer-
tain structures that are unlikely to be found in a sparse graph. A

ii Preface

generic possibility to work around this problem is to make the graph
artificially complete by adding zero-weighted edges. However, this
technique is only effective in conjunction with an efficient way to
exploit the original sparse structure. Otherwise, it will ultimately
lead to the same computational complexity as the problem on the
complete graph.

In this study, we investigate a new contraction-based separation
approach for the max-cut problem that is primarily intended for
problems on sparse graphs. The key idea is to contract edges based
on their value in a given linear programming (LP) solution. In
its simplest form, this technique presents an efficient way to sep-
arate so-called odd-cycle inequalities. In addition, we describe so-
phisticated methods to add missing edges to an already contracted
graph as well as to compute suitable values to extend the corre-
sponding LP solution accordingly. This allows us to apply solu-
tion techniques that were originally intended for problems on com-
plete graphs and could not have been used on a sparse graph other-
wise.

The book is structured as follows: In the first chapter, we introduce
fundamental concepts, methods, and results from the fields of graph
theory, complexity theory, linear and integer programming, as well
as combinatorial optimization.

In Chapter 2 we precisely define the max-cut problem, including its
reformulation in terms of quadratic optimization. We proceed with
the description of two interesting applications coming from circuit
layout design and statistical physics, respectively. Following a brief
introduction to approximate solution techniques, we give a survey of
the associated cut polytope and its facial structure. These combined
results will help in devising a branch-and-cut algorithm later on.
Finally, we outline the relevant literature and previous work on the
max-cut problem.

Our key contribution, the new shrink separation approach, is pre-
sented in Chapter 3. Here, we elaborate on the single steps of the
method and their respective underlying theory. Afterwards, we de-
scribe an actual realization of the shrink separation and point out

Preface 1ii

its deviations from the theoretical conceptual design. Finally, we
investigate some of the algorithm’s numerical aspects.

Chapter 4 deals with the computational experiments that we car-
ried out to test the performance of the shrink separation. After in-
troducing the considered test instances, we specify the experiments’
setup, including the hard- and software used, chosen parameters, and
tested separation scenarios. We proceed by summarizing the results
for the different classes of test instances before concluding with a
case study that takes an in-depth look at a particularly interesting
set of instances generated from real-world data.

The last chapter comprises a recapitulation of our contributions
and findings in this study, followed by our conclusions and some
suggestions regarding future research directions.

Finally, Appendices A and B contain the collective tables with
detailed information on the characteristics of the test instances and
the results of the computational experiments, respectively.

Author’s Note

This book is a revised version of my doctoral thesis submitted and
defended at the University of Heidelberg in 2011. Though the tech-
nical content is essentially the same as the submitted version, several
aspects have been improved. In particular, Section 3.1.3 has been
reworked and extended significantly. Also, the computational results
have been updated, misprints and minor errors fixed, and the writing
polished.

Acknowledgment

Many people contributed to this work. Above all I want to thank my
thesis advisor Prof. Dr. Gerhard Reinelt for his support and guidance
over the years. Also, I am grateful to Dr. Giovanni Rinaldi, who was
always glad to share his expertise in general as well as his insights
into the max-cut problem in particular.

iv Preface

Thanks to the members of the Discrete and Combinatorial Op-
timization Group at the University of Heidelberg for providing a
pleasant working environment. In particular, I would like to thank
Dr. Marcus Oswald for his ability to convey complex concepts and
for always being cheerful, enthusiastic, and supportive. Furthermore,
I owe respect and gratitude to Stefan Wiesberg for all the effort he
put into proofreading the entire original version of the thesis as well
as parts of the revised one; of course, I take full responsibility for
any remaining errors. Finally, Dr. Hanna Seitz with her talent for
encouraging and motivating people was always a pleasure to work
with. I appreciate our conversations and her help in putting large
problems into perspective.

I would like to thank PD Dr. Frauke Liers, Prof. Dr. Christoph
Buchheim, and Dr. Marcus Oswald for sharing their insights into
target cuts and for providing their target cut software framework.

Thanks to the members of the Operations Research Group at the
University of Klagenfurt for the great time I spent with them. I owe
special gratitude to the head of the group, Prof. Dr. Franz Rendl, as
well as to Dr. Angelika Wiegele for their expertise and their support.

Last but certainly not least, my heartfelt thanks go to my parents
Gisela and Adolf Bonato to whom I am indebted the most.

Heidelberg, September 2011 Thorsten Bonato

Contents

1 Preliminaries and Notations
1.1 Graphs.
1.1.1 Nodes, Edges, and Density
1.1.2 Incidence and Adjacency
1.1.3 Cuts and Degree
1.1.4 Paths, Cycles, and Connectivity
1.1.5 Subgraphs and Contractibility
1.1.6 Trees and Forests
1.1.7 Embeddings and Genera
1.1.8 Selected Classes of Graphs
1.2 Affine Geometry and Polyhedra
1.2.1 Affine Subspaces
1.2.2 Hyperplanes, Halfspaces, and Polyhedra . . .
1.3 Algorithms and Complexity
1.3.1 Polynomial-time Solvability
1.3.2 NP-completeness and Reducibility
1.3.3 Complexity of Optimization Problems
1.4 Mathematical Optimization
1.4.1 Linear Programming and Duality
1.4.2 Integer and Binary Programming
1.4.3 Combinatorial Optimization
1.4.4 Branch-and-Cut
1.45 Target Cuts

2 The Max-Cut Problem
2.1 Equivalent Optimization Problems
2.1.1 Unconstrained Quadratic —1/41 Optimization
2.1.2 Unconstrained Quadratic 0/1 Optimization .
2.2 Applications

© © 00 O UL U i W WD =

N R
— O Ul OO

vi Contents

2.2.1 Ising Spin Glasses
2.2.2 Via Minimization
2.3 Heuristics oo
2.3.1 Spanning Tree Heuristic
2.3.2 Kernighan-Lin Heuristic
2.4 Cut Polytope and Polyhedral Results
2.4.1 Selected Facet Defining Inequalities
2.4.2 Lifting Inequalities
2.5 Solving Max-Cut with Branch-and-Cut
2.6 Short Summary of Known Results

3 Shrink Separation
3.1 Components of the Separation Procedure
3.1.1 Switching and Reverse Switching
3.1.2 Contraction and Lifting
3.1.3 Extension and Projection
3.1.4 Separation
3.2 Implementation,
321 Workflow
3.2.2 Numerical Behavior

4 Computational Results

4.1 Test Instances
4.1.1 Ising Spin Glass Problems
4.1.2 Biq Mac Library
4.1.3 Frequency Assignment Instances

4.2 Computational Setup

4.3 Performance Comparison
4.3.1 CPU Time Reduction
4.3.2 Gap Closure

4.4 Case Study: The Frequency Assignment Instances

5 Discussion and Conclusions

A Data on the Test Instances

29
30
36
37
38
41
43
45
48
50

55
57
o8
67
7
91
99

Contents vii

B Data on the Computational Results 155
List of Algorithms 173
List of Figures 175
List of Tables 177
References 179
Symbols and Notations 189

Index 191

1. Preliminaries and Notations

In this chapter, we introduce the fundamental concepts and general
terminology used throughout this book. Definitions with a more
restricted scope are provided in subsequent chapters. Some elemen-
tary definitions are given to fix the terminology and to make the
presentation more self-contained.

1.1. Graphs

The present book deals with problems that are defined on graphs.
Various forms of graphs are also encountered in the solution ap-
proaches to these problems. We now introduce selected topics of
graph theory. The statement below is mainly adopted from the in-
troductory chapters of [Die05, GY04].

1.1.1. Nodes, Edges, and Density

An undirected graph is a pair G = (V, E') consisting of a nonempty
set V of nodes and a set E of edges which are unordered pairs of
nodes. Unless otherwise stated, we generally assume the graphs in
this book to be undirected. Therefore, we will omit the term “undi-
rected” from now on. A weighted graph additionally associates a
label, or weight, with every edge in the graph. Weights are usually
real numbers.

The node set of a graph G is referred to as V(G), its edge set
as E(G). These notations are independent of any actual names the
sets may have in a given context. We denote an edge e = {u,v}
by uv. Also, we always equate a node v and the respective 1-element
set {v}.

The cardinality of the node set V, written as |V, is called the

order of G. A graph of order n can have at most (g) edges, in

1

2 1. Preliminaries and Notations

which case we call the graph complete and denote it by K,. The
ratio |El/(7) of actual and potential edges is called the edge density,
or simply the density, of G. Graphs with a density near 0 and 1
are referred to as sparse and dense, respectively. However, the
decision whether a given graph is considered to be sparse or dense
is not absolute; it usually depends on both the context and the type
of graph at hand.

A graph is called finite if both V and E are finite. We will exclu-
sively deal with finite graphs.

1.1.2. Incidence and Adjacency

A node v is called incident with an edge e, and vice versa, if v € e.
The two nodes incident with an edge are its ends, and an edge joins
its ends. Two nodes are adjacent, or neighbors, if they are joined
by an edge. Two distinct edges e # f are adjacent if they share a
common end.

An edge joining a node with itself is called a loop. A collection of
at least two edges sharing the same ends is referred to as multiple
edge or parallel edge. A graph without loops or multiple edges is
called simple.

1.1.3. Cuts and Degree

Let U,W C V be two node sets. We call the set of edges with
precisely one end in U a cut of G and denote it by 6(U). In this
context, the set U and its complement U .y \ U are referred to
as the shores of the cut. We write 6(v) instead of §({v}) for a node
v € V and call §(v) the star of v. We will also use the abbreviation
(U :W):=6(U)N (W) for the set of edges with one end in U and
the other end in W.

The degree deg(v) of a node v is the number of edges incident
with v, loops counting twice. Thus, for graphs without loops, the
degree of v is identical to |§(v)|.

1.1. Graphs 3

1.1.4. Paths, Cycles, and Connectivity

A path is a nonempty graph P = (V, E') with pairwise distinct nodes
V={v;|i=0,...,k} and the edges F = {v;vi41 |i=0,...,k—1}.
The nodes vy and v, are linked by P and are called its ends. The re-
maining nodes vy, ..., v;x_1 are called the inner nodes of P. A path
is often referred to by the sequence of its nodes, i.e., P = vgv1 ... v,
and is called a path from vy to vy or simply a (vg, vg)-path. The
number of edges of a path is its length. In weighted graphs, how-
ever, the length of a path commonly refers to the aggregate weight
of its edges rather than their number.

Let P =wg...vp_1 be a path of length at least 2. Then, we obtain
a so-called cycle by adding the edge vp_ivg. As with paths, a cycle
is often referred to by the (cyclic) sequence of its nodes, e.g., the
above cycle could be written as C = vg...vr_1v9. The length of a
cycle is the number of its edges (or nodes) and a cycle of length &
is also called a k-cycle. A chord of a cycle C' is an edge that joins
two nodes of C' which are not adjacent in the cycle.

Two nodes u,v in a graph G are connected if they are linked
by a path in G. The graph G itself is connected if this is true for
any two of its nodes. The distance between two nodes u and v in
a graph G is the length of a shortest (u,v)-path in Gj; if no such
path exists, we set the distance to infinity.

1.1.5. Subgraphs and Contractibility

Let G = (V,E) and G’ = (V', E’) be two graphs. If V/ C V and
E’' C E then G’ is a subgraph of G (and G a supergraph of '),
written as G’ C G.

If G’ C G and G’ contains all the edges uv € E with u,v € V’
then G’ is an induced subgraph of G. We say that V' induces or
spans G’ in G and write G’ = G[V’]. Thus, for any node set U C V,
the (node-)induced subgraph G[U] is the graph on U whose edges
are exactly the edges of G with both ends in U. Finally, G’ C G is
a spanning subgraph of G if V'’ spans all of G, i.e., if V! =V.

4 1. Preliminaries and Notations

A connected component of GG is a connected subgraph of G
which is maximal with respect to edge inclusion. A complete sub-
graph of G is called a clique of G.

The operation of identifying a pair of adjacent nodes—while pre-
serving all other adjacencies between nodes—is referred to as ele-
mentary contraction, or simply as contraction. We assume that
multiple edges arising from a contraction are replaced by single edges.
A graph G is called contractible to another graph G’ if the latter
can be obtained from G by a sequence of contractions.

1.1.6. Trees and Forests

An acyclic graph, i.e., a graph not containing any cycles, is called a
forest. A connected forest is called a tree. Thus, a forest is a graph
whose connected components are trees. The nodes of degree 1 in a
tree are its leaves, the remaining nodes are its inner nodes.

Sometimes it is convenient to consider one node of a tree as special.
Such a node is called the root of this tree. Note that the root of a
tree is never called a leaf, even if it has degree 1. A tree with a fixed
root is called a rooted tree.

In a rooted tree T, the nodes at distance k from the root have
height k and form the k-th level of T'. The root has height 0. The
height of T itself is the maximum height of its nodes. The nodes on
level k + 1 which are adjacent to a node v on level k are called the
children of v and v is called the parent of its children. We refer
to children of the same parent as siblings. If every node in T has
at most k children, k > 2, we call it a k-ary tree. In case of a 2-ary
tree, we use the term binary tree instead.

1.1.7. Embeddings and Genera

Let Sk denote the orientable surface formed by adding £ handles
to the sphere. The sphere itself is denoted by Sp. It is topologically
equivalent to the flat plane since we can create a hole in the sphere’s
surface and then stretch out the surface onto the plane. The torus

1.2. Affine Geometry and Polyhedra 5

is 51, the double-torus S, and so on. The genus of S} is the
number of handles, k.

An embedding of a graph into a surface is a drawing of the graph
on the surface in such a way that its edges may intersect only at their
ends. In other words, the graph can be drawn on the surface without
any edges crossing. The genus of a graph is the minimum integer ¢
such that the graph can be embedded into S,.

1.1.8. Selected Classes of Graphs

A graph G = (V, E) is bipartite if its node set V' can be partitioned
into two nonempty subsets V; and V5 such that each edge has one
end in V7 and the other end in V5. G is complete bipartite if each
node in V] is joined to each node in Vo. We denote the complete
bipartite graph with [Vi| = m and |Va| = n by Ky 5.

A graph is planar if it can be drawn in a plane without any
edges crossing, i.e., if it has genus 0. We call a nonplanar graph G
almost planar if it contains a node v such that G becomes planar
by removing v and all its incident edges.

A graph is k-regular if all its nodes have the same degree k. A
3-regular graph is called cubic.

A grid graph is a graph that can be mapped to a grid, i.e., each
node corresponds to a grid point and each edge corresponds to a tie
between the respective grid points of its ends.

1.2. Affine Geometry and Polyhedra

A basic knowledge of polyhedral theory is essential to understand
the later chapters. We now give an overview of the relevant concepts
of affine geometry and polyhedral theory. It is mainly based on
the introductory chapters of [Brg83, Zie06]. We assume familiarity
with the standard linear theory of the real vector space R?, in
particular basic notions such as subspaces, linear independence,
dimension, scalar product, and so forth. As a convention, vectors

